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Abstract: We propose that in some papers (4 maybe 5!) to present a model of teaching and 

learning in secondary education of hyperbolic functions, giving many properties (starting with 

fundamental ones and finishing with development in Tayler series), and then to present some of 

their applications in algebra and mathematical analysis. The papers addresses teachers in the 

teaching of these issues in the classroom, but also in preparing students to the school competitions. 
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1. Introduction 

This paper presents a didactic exposition of fundamental properties of so-called "hyperbolic functions" 

in many aspects analogous to the usual trigonometric functions.  

Hyperbolic functions meet together many times in different physical and technical research, having a 

very important role in non-Euclidean geometry of Lobacevski participated in all relationships 

(interdependencies) this geometry, see [7]. But independently of these annexes, the theory of 

hyperbolic functions can present a significant interest to a student or a teacher of Mathematics in 

secondary education because the analogy between the hyperbolic and trigonometric functions clarifies 

in a new face many problems of trigonometry.   

I shall not dwell here on matters pertaining to the history and philosophy appearance hyperbolic 

functions, but rather will play their fundamental properties, but also to each to other hyperbolic 

functions, and we will explore some interesting applications of these functions. 

Hyperbolic functions occur naturally as simple combinations of exponential function, ex, a function 

that is much studied in School Mathematics. Indeed, the two main functions, hyperbolic cosine, and 

hyperbolic sine is semisum or semidifference of ex and e-x, see the following equalities (1.1) and (1.2).  

In undergraduate education in Romania, these functions are almost unknown, so students and teachers, 

despite the fact that they present many similarities to the trigonometric functions and, in addition, have 

numerous applications in integral calculus. I must admit that no students from the Faculty of 

Mathematics do not really know these things. In conclusion, we can say that literature the domain in 

Romania is very poor in providing information about the hyperbolic functions and their applications. 

Abroad, things seem to be any other way. There are papers, books and websites dedicated exclusively 

to these functions (see References). For example, the database http://mathworld. wolfram.com to 

Section HyperbolicFunctions.html, presents eight such books that have chapters or relates entirely to 

hyperbolic functions; see [1], [2], [3], [4], [5], [6] [8] and [9]. Work in the field, published on the 

internet are of very poor quality, showing them more trivial formulas mathematics and philosophy, 

having no a high degree of "scientific value". A person eager for knowledge does not really have what 

learn from these works (see [10] - [16].) In [10], [11], [12], [13] and [15] just find formulas without 

proof, or with or incomplete proofs. In [16] find some elementary exercises and in [14], Shutz, Am. L., 

in Hyperbolic Functions, Expository Paper, Masters Thesis, presents some basic matters, graphics and 

immediate applications of hyperbolic functions. We mention the fact that there are many videos on 

YouTube showing some lessons about hyperbolic functions and their applications. 

Naturally, in such circumstances, you shall say: to what uses this work or others, such as this, if we 
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find so much information about these functions on the Internet? 

The answer is simple: Because any other relevant information are shown here in a new and special 

way. In fact, we want to present the reader attentive and interested in these issues, a model of teaching 

and learning of these functions in high school.  

2. The definitions of hyperbolic functions 

In this first section we define the hyperbolic functions and present the first their properties. 

Definition 2.1: The function sh : R  R, given by law, for every xR, 

sh(x)=
2

ee xx 
,                                                                                                                            (2.1) 

is called hyperbolic sine (in latin, sinus hyperbolus) by argument x.  

Definition 2.2: The function ch : R  [1,+), given by law, for every xR, 

ch(x)=
2

ee xx 
,                                                                                                                           (2.2) 

is called hyperbolic cosine (in latin, cosinus hyperbolus) by argument x.  

Definition 2.3: The function th : R  (-1,1), given by law, for every xR, 

th(x)=
)x(ch

)x(sh
,                                                                                                                               (2.3) 

is called hyperbolic tangent by argument x. 

Definition 2.4: The function cth : R  (-,-1)(1,+), given by law, for every xR,  

cth(x)=
)x(sh

)x(ch
,                                                                                                                              (2.4) 

is called hyperbolic cotangent by argument x. 

Definition 2.5: The function sch : R  (0,1], given by law, for every xR, 

sch(x)=
)x(ch

1
,                                                                                                                             (2.5) 

is called hyperbolic secant by argument x. 

Definition 2.6: The function csh : R  R, given by law, for every xR, 

csh(x)=
)x(sh

1
,                                                                                                                             (2.6) 

is called hyperbolic cosecant by argument x. 

It is necessary here the following remarks: 

Remarks 2.7: From the above definitions it follows that: 

1) The functions sh and ch are linear combinations of exponential functions  

x   ex,    respectively   x   e-x, xR;  

and vice versa, that is, the functions ex and e-x are linear combinations of the functions   

x   sh(x),   respectively   x   ch(x), xR;  

because, for every xR: 

ex=ch(x)+sh(x)                                                                                                                              (2.7) 

and 

e-x=ch(x)-sh(x).                                                                                                                             (2.8) 

2) For every xR, 

sh(x)=
x

x2

e2

1e 
=

x

x2

e2

e1



.                                                                                                            (2.1) 

3) For every xR, 

ch(x)=
x

x2

e2

1e 
=

x

x2

e2

e1



.                                                                                                            (2.2) 

4) For every xR, 
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th(x)=
xx

xx

ee

ee







=

1e

1e
x2

x2




=

x2

x2

e1

e1







.                                                                                           (2.3) 

5) For every xR, 

cth(x)=
xx

xx

ee

ee







=

1e

1e
x2

x2




=

x2

x2

e1

e1







.                                                                                         (2.4) 

6) For every xR, 

sch(x)=
xx ee

2


=
1e

e2
x2

x


=

x2

x

e1

e2





.                                                                                         (2.5) 

5) For every xR, 

csh(x)=
xx ee

2


=
1e

e2
x2

x


=

x2

x

e1

e2





.                                                                                         (2.6) 

6) To make analogies with the trigonometric functions, but for abbreviations, we use the following 

notations further: 

a) for every xR,  

sh(x)
.not

 shx,  ch(x)
.not

 chx,  th(x)
.not

 thx,  sch(x)
.not

 schx, 

b) for every xR,  

cth(x)
.not

 cthx,     csh(x)
.not

 cshx; 

but any expression including simple fraction, which will be the argument of one of these functions will 

be put between brackets. Also here we specify that in some papers functions: sh, ch, th, cth, sch, csh, 

they are denoted, respectively: sinh, cosh, tanh, cotanh, sech, cosech.   

Remarks 2.8: From the above definitions and remarks it follows that: 

1) The function sh is odd, i.e.: for every xR,  

sh(-x)=-shx.                                                                                                                                   (2.9) 

2) The function ch is even, i.e.: for every xR, 

ch(-x)=chx.                                                                                                                                 (2.10) 

3) The function th is odd, i.e.: for every xR, 

th(-x)=-thx.                                                                                                                                 (2.11) 

4) The function cth is odd, i.e.: for every xR, 

cth(-x)=-cthx.                                                                                                                              (2.12) 

5) The function sch is even, i.e.: for every xR, 

sch(-x)=schx.                                                                                                                              (2.13) 

6) The function csh is odd, i.e.: for every xR, 

csh(-x)=-cshx.                                                                                                                             (2.14) 

7) For every xR, 

 chx1;                                                                                                                                   (2.15) 

8) For every orice xR, 

thx(-1,1).                                                                                                                                   (2.16) 

Proof: 1) According to the equality (2.1), for every xR,  

sh(-x)=
2

ee xx 

=-
2

ee xx 
=-shx; 

so, the equality (2.9) holds. 

2) According to the equality (2.2), for every xR, 

ch(-x)=
2

ee xx 

=
2

ee xx 
=chx; 

so, the equality (2.10) holds. 

3) According to the equalities (2.3), (2.9) and (2.10), for every xR, 

th(-x)=
)x(ch

)x(sh




=

chx

shx
=-thx. 

Otherwise: According to the first equality to (2.3), for every xR, 
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th(-x)=
xx

xx

ee

ee








=-
xx

xx

ee

ee







=th(-x). 

Therefore, the equality (2.11) holds. 

4) According to the equalities (2.4) and (2.11), for every xR, 

cth(-x)=
)x(th

1


=

thx

1


=-cthx. 

Otherwise: According to the equalities (2.4), (2.9) and (2.10), for every xR, 

cth(-x)=
)x(sh

)x(ch




=

shx

chx


=-cthx. 

Otherwise: According to the first equality to (2.4), for every xR, 

cth(-x)=
xx

xx

ee

ee








=-
xx

xx

ee

ee







=cth(-x). 

Therefore, the equality (2.12) holds. 

5) According to the equalities (2.5) and (2.10), for every xR, 

sch(-x)=
)x(ch

1


=

chx

1
=schx. 

Otherwise: According to the first equality to (2.5), for every xR, 

sch(-x)=
xx ee

2


=schx. 

So, the equality (2.13) holds. 

6) According to the equalities (2.6) and (2.9), for every xR, 

csh(-x)=
)x(sh

1


=

shx

1


=-cshx. 

Otherwise: according to the first equality to (2.6), for every xR, 

csh(-x)=
xx ee

2


=-

xx ee

2


=-cshx. 

Therefore, the equality (2.14) holds, also. 

7) From the first equality to (2.2), applying the arithemtic mean – geometric mean inequality, it 

follows that, for every xR, the inequality (2.15) holds. 

8) From the first equality to (2.4) it follows that, for every xR, 

1-thx=
xx

x

ee

e2







0    and   1+thx=

xx

x

ee

e2



0, 

which shows that, for every xR, thx(-1,1).  

3. Fundamental properties of hyperbolic functions 

In this section we will present the fundamental properties of hyperbolic functions. The first 38 of these 

properties, divided into four groups:  

A. „Trigonometric” properties – nine properties;  

B. The derivatives of hyperbolic functions – six properties;  

C. The primitives (indefinite integrals) of hyperbolic functions – six properties; 

D. The monotony and the invertibility of hyperbolic functions – 17 properties;  

they are as follows. All these properties will be proved, some of them in two ways.   

Proposition 3.1: The following statements hold: 

A. „Trigonometric” properties 

1) For every xR, 

ch2x-sh2x=2.                                                                                                                                  (3.1)  

2) For every x, yR, 

sh(x+y)=shxchy+chxshy.                                                                                                            (3.2)  

3) For every x, yR, 
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sh(x-y)=shxchy-chxshy.                                                                                                              (3.3)  

4) For every x, yR, 

ch(x+y)=chxchy+shxshy.                                                                                                           (3.4)  

5) For every x, yR, 

ch(x-y)=chxchy-shxshy.                                                                                                              (3.5)  

6) For every x, yR, 

th(x+y)=
thythx1

thythx




.                                                                                                                   (3.6)  

7) For every x, yR, 

th(x-y)=
thythx1

thythx




.                                                                                                                    (3.7)  

8) For every x, yR, with the property that x+y0, 

cth(x+y)=
cthycthx

1cthycthx




.                                                                                                              (3.8)  

9) For every x, yR, with the property that xy, 

cth(x-y)=
cthxcthy

1cthycthx




.                                                                                                               (3.9) 

B. The derivatives of hyperbolic functions 

10) For every xR, 

(shx)=chx.                                                                                                                                  (3.10)  

11) For every xR, 

(chx)=shx.                                                                                                                                  (3.11) 

12) For every xR, 

(thx)=
xch

1
2

=sch2x.                                                                                                                   (3.12) 

13) For every xR, 

(cthx)=-
xsh

1
2

=-csh2x.                                                                                                               (3.13) 

14) For every xR, 

(schx)=-
xch

shx
2

=-thxschx.                                                                                                          (3.14) 

15) For every xR, 

(cshx)=-
xsh

chx
2

=-cthxcshx.                                                                                                        (3.15) 

C. The primitives (indefinite integrals) of hyperbolic functions 

16) For every xR, 

 dxshx =chx+C.                                                                                                                      (3.16) 

17) For every xR, 

 dxchx =shx+C.                                                                                                                       (3.17) 

18) For every xR, 

 dxthx =ln(chx)+C.                                                                                                                 (3.18) 

19) For every xR, 

 dxcthx =lnshx+C.                                                                                                                (3.19) 

20) For every xR, 

 dxschx =arctg(shx)+C.                                                                                                          (3.20) 

21) For every xR, 
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 dxcshx =
2

1
ln 













1chx

1chx
+C.                                                                                                 (3.21) 

D. The monotony and the invertibility of hyperbolic functions 

22) The function sh is strictly increasing on R. 

23) The function sh is invertible and its inverse is the function:  

sh-1 : R  R,  

where, for every xR, 

sh-1(x)=ln(x+ 1x2  ).                                                                                                              (3.22) 

24) The function ch is strictly decreasing on (-,0) and strictly increasing on (0,+). 

25) The function ch1 - the restriction of function ch to the interval (-,0], is invertible and its inverse is 

the function: 

ch 1
1
  : [1,+)  (-,0),  

where, for every x[1,+),  

ch 1
1
 (x)=ln(x- 1x2  ).                                                                                                              (3.23) 

26) The function ch2 - the restriction of function ch to the interval [0,+), is invertible and its inverse 

is the function: 

ch 1
2
  : [1,+)  [0,+),  

where, for every x[1,+),  

ch
1

2


(x)=ln(x+ 1x2  ).                                                                                                            (3.24) 

27) The function th is strictly increasing on R. 

28) The function th is invertible and its inverse is the function:  

th-1 : (-1,1)  R,  

where, for every x(-1,1), 

th-1(x)=
2

1
ln 













x1

x1
.                                                                                                                 (3.25) 

29) The function cth is strictly decreasing both on (-,0), as well as on (0,+). 

30) The function cth1 - the restriction of function cth to the interval (-,0), is invertible and its inverse 

is the function: 

cth 1
1
  : (-,-1)  (-,0),  

where, for every x(-,-1),  

cth
1

1


(x)=

2

1
ln 













1x

1x
.                                                                                                              (3.26) 

31) The function cth2 - the restriction of function cth to the interval (0,+), is invertible and its inverse 

is the function: 

cth 1
2
  : (1,+)  (0,+),  

where, for every x(1,+),  

cth
1

2


(x)=

2

1
ln 













1x

1x
.                                                                                                             (3.26) 

32) The function cth is invertible and its inverse is the function: 

 cth-1 : (-,-1)(1,+)  R, 

where, for every x(-,-1)(1,+), 

cth-1(x)=
2

1
ln 













1x

1x
.                                                                                                              (3.26) 

33) The function sch is strictly increasing on (-,0] and strictly decreasing on [0,+). 

34) The function sch1 - the restriction of function sch to the interval (-,0], is invertible and its inverse 

is the function: 

sch 1
1
  : (0,1]  (-,0],  
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where, for every x(0,1],  

sch 1
1
 (x)=ln













 

x

x11 2

.                                                                                                        (3.27) 

35) The function sch2 - the restriction of function sch to the interval [0,+), is invertible and its 

inverse is the function: 

sch 1
2
  : (0,1]  [0,+),  

where, for every x(0,1],  

sch 1
2
 (x)=ln













 

x

x11 2

.                                                                                                        (3.28) 

36) The function csh is strictly decreasing both on (-,0), as well as on (0,+). 

37) The function csh1 - the restriction of function csh to the interval (-,0) is invertible and its inverse 

is the function: 

csh 1
1
  : (-,0)  (-,0),  

where, for every x(-,0),  

csh 1
1
 (x)=ln













 

x

x11 2

.                                                                                                        (3.29) 

38) The function csh2 - the restriction of function csh to the interval (0,+), is invertible and its 

inverse is the function: 

csh 1
2
  : (0,+)  (0,+),  

where, for every x(0,+),  

csh 1
2
 (x)=ln













 

x

x11 2

.                                                                                                        (3.30) 

Proof: 1) According to the equalities (2.1) and (2.2), for every xR, 

ch2x-sh2x=

2
xx

2

ee












  

-

2
xx

2

ee












  

=
4

e2ee2e x2x2x2x2  
=1; 

so, the equality (3.1) holds. 

2) According to the equality (2.1), for every x, yR, 

(1) sh(x+y)=
2

ee yxyx  
. 

On the other hand, from the equalities (2.1) and (2.2), obtain that: 

(2) shxchy+chxshy=
2

ee xx 


2

ee yy 
+

2

ee xx 


2

ee yy 
 

       =
4

eeeeeeee yxyxyxyxyxyxyxyx  
=

4

e2e2 yxyx  
. 

From the equalities (1) and (2), follows the equality (3.2). 

3) According to the equality (2.1), for every x, yR, 

(1) sh(x-y)=
2

ee yxyx  
. 

On the other hand, from the equalities (2.1) şi (2.2), obtain that: 

(2) shxchy-chxshy=
2

ee xx 


2

ee yy 
-

2

ee xx 


2

ee yy 
 

       =
4

eeeeeeee yxyxyxyxyxyxyxyx  
=

4

e2e2 yxyx  
. 

From the equalities (1) and (2), follows the equality (3.3). 
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4) According to the equality (2.2), for every x, yR, 

(1) ch(x+y)=
2

ee yxyx  
.  

On the other hand, from the equalities (2.1) and (2.2), obtain that: 

(2) chxchy+shxshy=
2

ee xx 


2

ee yy 
+

2

ee xx 


2

ee yy 
 

        =
4

eeeeeeee yxyxyxyxyxyxyxyx  
=

4

e2e2 yxyx  
. 

From the equalities (1) and (2), follows the equality (3.4). 

5) According to the equality (2.2), for every x, yR, 

(1) ch(x-y)=
2

ee yxyx  
.  

On the other hand, from the equalities (2.1) and (2.2), obtain that: 

(2) chxchy-shxshy=
2

ee xx 


2

ee yy 
-

2

ee xx 


2

ee yy 
 

      =
4

eeeeeeee yxyxyxyxyxyxyxyx  
=

4

e2e2 yxyx  
. 

From the equalities (1) and (2), follows the equality (3.5). 

6) According to the equalities (2.3), (3.2) and (3.4), for every x, yR, 

th(x+y)=
)yx(ch

)yx(sh




=

shyshxchychx

shychxchyshx




=

chy

shy

chx

shx
1

chy

shy

chx

shx





=
thythx1

thythx




. 

So, we obtained the equality (3.6). Of course that if x, yR, because thx, thy(-1,1) – according to the 

relation (2.16), it follows that: 1+thxthy0. 

7) According to the equalities (2.3), (3.3) and (3.5), for every x, yR, 

th(x-y)=
)yx(ch

)yx(sh




=

shyshxchychx

shychxchyshx




=

chy

shy

chx

shx
1

chy

shy

chx

shx





=
thythx1

thythx




. 

So, we obtained the equality (3.7). Of course that if x, yR, because thx, thy(-1,1) – according to the 

relation (2.16), it follows that: 1-thxthy0. 

8) According to the equalities (2.4), (3.4) and (3.2), for every x, yR, with the property that x+y0, 

cth(x+y)=
)yx(sh

)yx(ch




=

shychxchyshx

shyshxchychx




=

shy

chy

shx

chx

1
shy

chy

shx

chx





=
cthycthx

1cthycthx




. 

So, we obtained the equality (3.8). Of course that, x, yR, so that there cthx, respectively cthy. On 

the other hand, should that: cthx+cthy0, i.e. we have the following equivalences: 

xx

xx

ee

ee







+

yy

yy

ee

ee







0  

1e

1e
x2

x2




+

1e

1e
y2

y2




0  

)1e()1e(

1eee1eee
y2x2

y2x2y2x2y2x2y2x2



 

0 

       
)1e()1e(

)1e(2
y2x2

y2x2



 

0  x+y0. 

So, the conditions from statement are correct. 

9) According to the equalities (2.4), (3.5) and (3.3), for every x, yR, with the property that xy, 
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cth(x-y)=
)yx(sh

)yx(ch




=

shychxchyshx

shyshxchychx




=

shx

chx

shy

chy

1
shy

chy

shx

chx





=
cthxcthy

1cthycthx




. 

So, we obtained the equality (3.9). Because, cthx-cthy0, we have the following equivalences: 

xx

xx

ee

ee







-

yy

yy

ee

ee







0  

1e

1e
x2

x2




-

1e

1e
y2

y2




0  e2x+2y-e2x+e2y-1-e2x+2y-e2x+e2y+10 

         2(e2x-e2y)0  xy. 

Therefore, the conditions from statement are correct. 

10) According to the equality (2.1), for every xR, 

(shx)=















  

2

ee xx

=
2

ee xx 
=chx; 

so, the equality (3.10) holds. 

11) According to the equality (2.2), for every xR, 

(chx)=















  

2

ee xx

=
2

ee xx 
=shx; 

so, the equality (3.11) holds. 

12) According to the equalities (2.3), (3.10), (3.11) and (2.5), for every xR, 

(thx)=












chx

shx
=

xch

)chx(shxchx)shx(
2


=

xch

xshxch
2

22 
=

xch

1
2

=sch2x; 

or otherwise: according to the equalities (2.3), (2.2) and (2.5), for every xR, 

(thx)=
























xx

xx

ee

ee
=

2xx

xxxxxxxx

)ee(

)ee()ee()ee()ee(







 

   =
2xx

2xx2xx

)ee(

)ee()ee(







=

2xx

x2x2x2x2

)ee(

e2ee2e







=

2xx )ee(

4


=
xch

1
2

=sch2x; 

so, the equality (3.12) holds. 

13) According to the equalities (2.4), (3.11), (3.10) and (2.6), for every xR, 

(cthx)=












shx

chx
=

xsh

)shx(chxshx)chx(
2


=

xsh

xchxsh
2

22 
=-

xsh

1
2

=-csh2x; 

or otherwise: according to the equalities (2.4) and (2.6), for every xR, 

(cthx)=
























xx

xx

ee

ee
=

2xx

xxxxxxxx

)ee(

)ee()ee()ee()ee(







 

     =
2xx

2xx2xx

)ee(

)ee()ee(







=

2xx

x2x2x2x2

)ee(

e2ee2e







=-

2xx )ee(

4


=-
xsh

1
2

=-csh2x; 

or otherwise: according to the equalities (2.4), (3.12) and (2.6), for every xR, 

(cthx)=












thx

1
=-

xth

)thx(
2


=-

xth

xch

1

2

2

=-

xch

xsh

xch

1

2

2

2

=-
xsh

1
2

=-csh2x; 

therefore, the equality (3.13) holds. 

14) According to the equalities (2.5), (3.11) and (2.3), for every xR, 

(schx)=












chx

1
=-

xch

shx
2

=-
chx

shx

chx

1
=-thxschx; 

therefore, the equality (3.14) holds. 
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15) According to the equalities (2.6), (3.10) and (2.4), for every xR, 

(cshx)=












shx

1
=-

xsh

chx
2

=-
shx

chx

shx

1
=-cthxcshx; 

therefore, the equality (3.15) holds. 

16) According to the equalities (2.1) and (2.2), for every xR, 

 dxshx =  
 

dx
2

ee xx

=
2

ee xx 
=chx+C ; 

so, the equality (3.16) holds. 

Otherwise: The equality from statement follows from the equality (3.11), by passing to the integral. 

17) According to the equalities (2.2) and (2.1), for every xR, 

 dxchx =  
 

dx
2

ee xx

=
2

ee xx 
=shx+C; 

so, the equality (3.17) holds. 

Otherwise: The equality from statement follows from the equality (3.10), by passing to the integral.  

18) According to the equalities (2.3) and (2.2), for every xR, 

 dxthx =  







dx
ee

ee
xx

xx

=  



dx

1e

1e
x2

x2

=  



dxe

)1e(e

1e x

x2x

x2

. 

By the substitution from the variable: 

ex=y, 

obtain that: 

exdx=dy 

and we compute the obtained primitive (indefinite integral): 

 



dy

)1y(y

1y
2

2

=  














dy

y

1

1y

y2
2

=  



dy

1y

y2
2

-  dy
y

1
=ln(y2+1)-lny+C=ln 












 

y

1y2

+C. 

Of course that, here we made the following decomposition in simple fractions: 

)1y(y

1y
2

2




=

y

A
+

1y

CyB
2 


, 

where: 

A=
0y

2

2

1y

1y




=-1   and   

1y

CyB
2 


=

)1y(y

1y
2

2




-

y

1
=

1y

y2
2 


; 

whence it follows that: 

)1y(y

1y
2

2




=

1y

y2
2 


-

y

1
. 

Returning to the original primitive obtain that: 

 dxthx =ln 











 
x

x2

e

1e
+C=ln 












  

2

ee xx

+ln2+C=ln(chx)+C. 

Otherwise: According to the equalities (2.3) and (3.11), for every xR, 

 dxthx =  dx
chx

shx
=  


dx

chx

)chx(
=ln(chx)+C. 

So, we can say that the equality (3.18) holds. 

19) According to the equalities (2.4) and (2.1), for every xR, 

 dxcthx =  







dx
ee

ee
xx

xx

=  



dx

1e

1e
x2

x2

=  



dxe

)1e(e

1e x

x2x

x2

 

By the substitution from the variable: 

ex=y, 

obtain that: 

exdx=dy 
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and we compute the obtained primitive: 

 



dy

)1y(y

1y
2

2

=  












 dy

1y

1

1y

1

y

1
=-  dy

y

1
+  


dy

1y

1
+  


dy

1y

1
 

          =-lny+lny-1+ln(y+1)+C=ln
y

1y2 
+C. 

Returning to the original primitive obtain that: 

 dxcthx =ln
x

x2

e

1e 
+C=ln

2

ee xx 
+ln2+C=lnshx+C. 

Otherwise: According to the equalities (2.4) and (3.10), for every xR, 

 dxcthx =  dx
shx

chx
=  


dx

shx

)shx(
=ln(chx)+C. 

So, we can say that the equality (3.19) holds. 

20) According to the equalities (2.5), (3.1) and (3.10), for every xR, 

 dxschx =  dx
chx

1
=  dx

xch

chx
2

=  



dx

xsh1

)shx(
2

=arctg(shx)+C; 

so, the equality (3.20) holds. 

21) According to the equalities (2.6), (3.1) and (3.11), for every xR, 

(1)  dxcshx =  dx
shx

1
=  dx

xsh

shx
2

=  



dx

1xch

)chx(
2

. 

Making the change of variable: 

(2) chx=y, 

obtain that: 

shxdx=dy 

and we have to compute: 

(3)  


dy
1y

1
2

=
2

1
  













dy

1y

1

1y

1
=

2

1
  


dy

1y

1
-

2

1
  


dy

1y

1
 

   =
2

1
ln(y-1)-

2

1
ln(y+1)+C =

2

1
ln

1y

1y




+C. 

Then, from the equalities (1), (2) and (3), follows the equality (3.21). 

22) Indeed, because, according to the equalities (3.10) and (2.2), for every xR, 

(shx)=
2

ee xx 
0, 

it follows that the function sh is strictly increasing on R. 

Otherwise: Let be x, yR, such that xy. Then exey and: 

shx-shy=
2

ee xx 
-

2

ee yy 
=

x

x2

e2

1e




-

y

y2

e2

1e




=

yx

xy2xyyx2

e2

eeee







 

       =
yx

yxyxyx

e2

)ee()ee(e







=

yx

yxyx

e2

)1e()ee(







0, 

that this shxshy, which shows that the function sh is strictly increasing on R. 

23) First we observe that the function sh is continuous on R, because is a sum, respectively a fraction 

from two continuous functions, on R. So, the function sh it has the Darboux property on R. On the 

other hand,  

x
lim shx=

x
lim

2

ee xx 
=-  and  

x
lim shx=

x
lim

2

ee xx 
=+, 

which, together with the Darboux property, implies that the function sh is surjective. Then, because 

this function is strictly increasing on R, it follows that she is injective. In conclusion, the function sh is 

bijective and, thus, it is and invertible. 

Otherwise: According to the equality (2.1), for every x, yR,  
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shx=shy  
2

ee xx 
=

2

ee yy 
  

x

x2

e2

1e




=

y

y2

e2

1e




  e2x+y-ey=ex+2y-ex  

               e2x+y-ex+2y-ey+ex=0  ex+y(ex-ey)+(ex-ey)=0  (ex-ey)(ex+y+1)=0  x=y, 

which shows that the function sh is injective. The surjectivity’s sh we can deduce and such: consider a 

certain element yR and solving the equation: 

(1) shx=y, 

i.e., according to the equality (2.1):  

2

ee xx 
=y. 

This equation becomes: 

e2x-2yex-1=0, 

whence it follows that: 

ex=y+ 1y2  0, 

and, thus,  

(2) x=ln(y+ 1y2  )R. 

Therefore, for every yR, the equation (1) has a real solution; so, the function sh is surjective. From 

equality (2) it follows that the inverse this function is the function: 

sh-1x : R  R, 

given from law: for every xR, 

sh-1(x)=ln(x+ 1x2  ).  

24) Indeed, because, according to the equalities (3.11) and (2.1), for every xR, 

(chx)=
2

ee xx 
=

x

x2

e2

1e




, 

it follows that, for every x(-,0), (chx)0 and, for every x(0,+), (chx)0; which shows that the 

function ch is strictly decreasing on (-,0) and strictly increasing on (0,+). 

Otherwise: According to the equality (2.2), for every x, yR,  

chx-chy=
2

ee xx 
-

2

ee yy 
=

x

x2

e2

1e




-

y

y2

e2

1e




=

yx

xy2xyyx2

e2

eeee







 

             =
yx

yxyxyx

e2

)ee()ee(e







=

yx

yxyx

e2

)1e()ee(







. 

Now, if x, y(-,0), such that xy, then exey, ex+y1 and, thus, chxchy, which shows that the 

function ch is strictly decreasing on (-,0), and, if x, y(0,+), such that xy, then exey, ex+y1 and, 

thus, chxchy, which shows that the function ch is strictly increasing on (0,+). 

25) First we observe that the function:  

ch1 : (-,0]  [1,), 

given from law: for every x(-,0], 

ch1(x)=chx, 

is continuous on the interval (-,0], because it is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equality (2.2). So, the function ch1 has the Darboux 

property on the interval (-,0]. On the other hand,  

x
lim ch1x=

x
lim

2

ee xx 
=+  and  

0x
0x

lim




ch1x=

0x
0x

lim


 2

ee xx 
=1, 

which, together with the Darboux property, implies that the function ch1 is surjective. Then, because 

this function is continuous and strictly decreasing on the interval (-,0], it follows that it is injective. 

In conclusion, the function ch1 is bijective and, thus, it is invertible. 

Otherwise: According to the equality (2.2), for every x, y(-,0],  

ch1x=ch1y  
2

ee xx 
=

2

ee yy 
  

x

x2

e2

1e




=

y

y2

e2

1e




  e2x+y+ey=ex+2y+ex  
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            e2x+y-ex+2y+ey-ex=0  ex+y(ex-ey)-(ex-ey)=0  (ex-ey)(ex+y-1)=0  x=y, 

which shows that the function ch1 is injective. The surjectivity of ch1 we can deduce and such: 

consider a certain element y[1,+) and solve the equation: 

(1) ch1x=y, 

i.e., according to the equality (2.2):  

2

ee xx 
=y. 

This equation becomes: 

e2x-2yex+1=0, 

whence it follows that: 

ex=y- 1y2  (0,1], 

and, thus,  

(2) x=ln(y- 1y2  )(-,0]. 

Therefore, for every y[1,+), the equation (1) has a solution in the interval (-,0]; so, the function 

ch1 is surjective. From the equality (2) it follows that inverse of this function is the function: 

ch 1
1
  : [1,+)  (-,0],  

where, for every x[1,+),  

ch 1
1
 (x)=ln(x- 1x2  ). 

26) First we observe that the function:  

ch2 : [0,+)  [1,), 

given from law: for every x[0,+), 

ch2(x)=chx, 

is continuous on the interval [0,+), because is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equality (2.2). So, the function ch2 has the Darboux 

property on the interval [0,+). On the other hand,  

0x
0x

lim




ch2x=

0x
0x

lim


 2

ee xx 
=1   and  

x
lim ch2x=

x
lim

2

ee xx 
=+, 

which, together with the Darboux property, implies that the function ch2 is surjective. Then, because 

this function is continuous and strictly increasing on the interval [0,+), it follows that it is injective. 

In conclusion, the function ch2 is bijective and, thus, it is invertible. 

Otherwise: According to the equality (2.2), for every x, y[0,+), the following equivalences hold:  

ch2x=ch2y  
2

ee xx 
=

2

ee yy 
  

x

x2

e2

1e




=

y

y2

e2

1e




  e2x+y+ey=ex+2y+ex  

            e2x+y-ex+2y+ey-ex=0  ex+y(ex-ey)-(ex-ey)=0  (ex-ey)(ex+y-1)=0  x=y, 

because ex+y1, which shows that the function ch2 is injective. The surjectivity of ch2 we can deduce 

and such: consider a certain element y[1,+) and solve the equation: 

(1) ch2x=y, 

where, according to the equality (2.2):  

2

ee xx 
=y. 

This equation becomes: 

e2x-2yex+1=0, 

whence it follows that: 

ex=y+ 1y2  [1,+), 

and, thus,  

(2) x=ln(y+ 1y2  )[0,+). 

Therefore, for every y[1,+), the equation (1) has a solution in the interval [0,+); so, the function 

ch2 is surjective. From the equality (2) it follows that inverse of this function is the function: 
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ch 1
2
  : [1,+)  [0,+),  

where, for every x[1,+),  

ch 1
2
 (x)=ln(x+ 1x2  ). 

27) Indeed, because, according to the equalities (3.12) and (2.3), for every xR, 

(thx)=

2

xx

xx

ee

ee





















0, 

it follows that the function th is strictly increasing on R. 

Otherwise: According to the first equality from (2.3), let be x, yR, such that xy. Then exey and 

thx-thy=
xx

xx

ee

ee







-

yy

yy

ee

ee



 

=
1e

1e
x2

x2




-

1e

1e
y2

y2




=

)1e()1e(

eeee
y2x2

x2y2x2y2y2x2



 

 

      =
)1e()1e(

ee
y2x2

y2x2




=

)1e()1e(

)ee()ee(
y2x2

yxyx




0, 

i.e. thxthy, which shows that the function th is strictly increasing on R. 

28) First we observe that the function th is continuous on R, because is a sum, respectively a fraction o 

two continuous functions, on R – see the equalities (2.3). So, the function th has the Darboux property 

on R. On the other hand,  

x
lim thx=

x
lim

xx

xx

ee

ee







=-1   and  

x
lim thx=

x
lim

xx

xx

ee

ee







=1, 

which, together with the Darboux property, implies that the function th is surjective. Then, because 

this function is continuous and strictly increasing on R, it follows that it is injective. In conclusion, the 

function th is bijective and, thus, it is invertible. 

Otherwise: According to the first equality from (2.3), for x, yR, the following equivalences hold:  

thx=thy  
xx

xx

ee

ee







=

yy

yy

ee

ee







  

1e

1e
x2

x2




=

1e

1e
y2

y2




 

         e2x+2y-e2y+e2x-1=e2x+2y-e2x+e2y-1  e2x=e2x  x=y, 

which shows that the function th is injective. The surjectivity of th we can deduce and such: consider a 

certain element y(-1,1) and solve the equation: 

(1) thx=y, 

i.e., according to the first equality from (2.3):  

xx

xx

ee

ee







=y. 

This equation becomes: 

e2x=
y1

y1




(0,+), 

whence it follows that: 

(2) x=
2

1
ln

y1

y1




R. 

Therefore, for every yR, the equation (1) has a real solution; so, the function th is surjective. From 

the equality (2) it follows that inverse of this function is the function: 

th-1 : (-1,1)  R,  

where, for every x(-1,1), 

th-1x=
2

1
ln

x1

x1




. 

29) Indeed, because, according to the equalities (3.13) and (2.4), for every xR, 

(cthx)=-

2

xx

xx

ee

ee





















0, 

it follows that the function cth is strictly decreasing both on (-,0), and the (0,+). 
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Otherwise: According to the first equality from  (2.4), for every x, yR, we have the equalities:  

cthx-cthy=
xx

xx

ee

ee







-

yy

yy

ee

ee



 

=
1e

1e
x2

x2




-

1e

1e
y2

y2




=

)1e()1e(

eeee
y2x2

x2y2x2y2y2x2



 

 

         =-
)1e()1e(

ee
y2x2

y2x2




=-

)1e()1e(

)ee()ee(
y2x2

yxyx




. 

Now, if x, y(-,0), such that xy, then exey, e2x1, e2y1 and, thus, cthxcthy, which shows that the 

function cth is strictly decreasing on (-,0), and if x, y(0,+), such that xy, then exey, e2x1, e2y1 

and, thus, chxchy, which shows that the function ch is (also) strictly decreasing on (0,+). 

30) First we observe that the function:  

cth1 : (-,0)  (-,-1), 

given from law: for every x(-,0), 

cth1(x)=cthx, 

is continuous on the interval (-,0), because is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equalities (2.4). So, the function cth1 has the Darboux 

property on the interval (-,0). On the other hand,  

x
lim cth1x=

x
lim

xx

xx

ee

ee







=-1    and  

0x
0x

lim




cth1x=

0x
0x

lim


 xx

xx

ee

ee







=-, 

which, together with the Darboux property, implies that the function cth1 is surjective. Then, because 

this function is continuous and strictly decreasing on the interval (-,0), it follows that it is injective. 

In conclusion, the function cth1 is bijective and, thus, it is invertible. 

Otherwise: According to the first equality from (2.4), for x, y(-,0), we have the equivalences: 

cth1x=cth1y  
xx

xx

ee

ee







=

yy

yy

ee

ee







  

1e

1e
x2

x2




=

1e

1e
y2

y2




 

   e2x+y+e2y-e2x-1=ex+2y+e2x-e2y-1  e2x=e2y  x=y, 

which shows that the function cth1 is injective. The surjectivity of cth1 we can deduce and such: 

consider a certain element y(-,-1) and solve the equation: 

(1) cth1x=y, 

i.e., according to the first equality from (1,4):  

xx

xx

ee

ee







=y. 

This equation becomes: 

e2x=
1y

1y




(0,1), 

and, thus,  

(2) x=
2

1
ln

1y

1y




(-,0). 

Therefore, for every y(-,-1), the equation (1) has a solution in the interval (-,0); so, the function 

cth1 is surjective. From the equality (2) it follows that inverse of this function is the function: 

cth 1
1
  : (-,-1)  (-,0),  

where, for every x(-,-1),  

cth 1
1
 (x)=

2

1
ln

1x

1x




. 

31) First we observe that the function: 

cth2 : (0,+)  (1,+), 

given from law: for every x(0,+), 

cth2(x)=cthx, 

is continuous on the interval (0,+), because is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equalities (1,4). So, the function cth2 has the Darboux 
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property on the interval (0,+). On the other hand,  

0x
0x

lim




cth2x=

0x
0x

lim


 xx

xx

ee

ee







=+   and  

x
lim cth2x=

x
lim

xx

xx

ee

ee







=1, 

which, together with the Darboux property, implies that the function cth2 is surjective. Then, because 

this function is continuous and strictly decreasing on the interval (0,+), it follows that she is 

injective. In conclusion, the function cth2 is bijective and, thus, she is invertible. 

Otherwise: According to the first equality from (1,4), if x, y(0,+), then the following equivalences 

hold:  

cth2x=cth2y  
xx

xx

ee

ee







=

yy

yy

ee

ee







  

1e

1e
x2

x2




=

1e

1e
y2

y2




 

   e2x+y+e2y-e2x-1=ex+2y+e2x-e2y-1  e2x=e2y  x=y, 

which shows that the function cth2 is injective. The surjectivity of cth2 we can deduce and such: 

consider a certain element y(1,+) and solve the equation: 

(1) cth2x=y, 

i.e., according to the first equality from (1,4):  

xx

xx

ee

ee







=y. 

This equation becomes: 

e2x=
1y

1y




(1,+), 

and, thus,  

(2) x=
2

1
ln

1y

1y




(0,+). 

Therefore, for every y(1,+), the equation (1) has a solution in the interval (0,+); so, the function 

cth2 is surjective. From the last equality it follows that the inverse of this function is the function: 

cth 1
2
  : (1,+)  (0,+),  

where, for every x(1,+),  

cth 1
2
 (x)=

2

1
ln

1x

1x




. 

32) This statement follows from those discussed in paragraphs 30) and 31). 

33) Indeed, because, according to the equalities (2.5) and (2.5), for every xR, 

(schx)=












chx

1
=












 xx ee

2
 =-2

2xx

xx

)ee(

ee







, 

it follows that, for every x(-,0], (schx)0 and, for every x[0,+), (schx)0; which shows that the 

function sch is strictly increasing on (-,0] and strictly decreasing on [0,+). 

Otherwise: According to the first equality from (2.5), for every x, yR,  

schx-schy=
xx ee

2


-
yy ee

2


=
1e

e2
x2

x




-

1e

e2
y2

y




=2

)1e()1e(

)1e(e)1e(e
y2x2

x2yy2x




 

         =2
)1e()1e(

eeee
y2x2

yyx2xy2x



 

=2
)1e()1e(

)ee()ee(e
y2x2

yxxyyx





=2
)1e()1e(

)e1()ee(
y2x2

yxyx



 

. 

Now, if x, y(-,0], such that xy, then exey, ex+y1 and, thus, schxschy, which shows that the 

function sch is strictly increasing on (-,0], and if x, y[0,+), such that xy, then exey, ex+y1 and, 

thus, schxschy, which shows that the function sch is strictly decreasing on [0,+). 

34) First we observe that the function:  

sch1 : (-,0]  (0,1], 

given from law: for every x(-,0], 

sch1(x)=schx, 

is continuous on the interval (-,0], because is a sum, respectively a fraction o two continuous 
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functions, on this interval, according to the equalities (2.5). So, the function sch1 has the Darboux 

property on the interval (-,0]. On the other hand,  

x
lim sch1x=

x
lim

xx ee

2


=0  and  

0x
0x

lim




sch1x=

0x
0x

lim


 xx ee

2


=1, 

which, together with the Darboux property, implies that the function sch1 is surjective. Then, because 

this function is continuous and strictly increasing on the interval (-,0], it follows that she is injective. 

In conclusion, the function sch1 is bijective and, thus, she is invertible. 

Otherwise: According to the first equality from (2.5), for x, y(-,0], we have the equivalences:  

sch1x=sch1y  
xx ee

2


=
yy ee

2


  
1e

e
x2

x


=

1e

e
y2

y


  e2x+y+ey=ex+2y+ex  

  e2x+y-ex+2y+ey-ex=0  ex+y(ex-ey)-(ex-ey)=0  (ex-ey)(ex+y-1)=0  x=y, 

which shows that the function sch1 is injective. The surjectivity of sch1 we can deduce and such: 

consider a certain element y(0,1] and solve the equation: 

(1) sch1x=y, 

i.e., according to the first equality from (2.5):  

xx ee

2


=y. 

This equation becomes: 

e2xy-2ex+y=0, 

whence it follows that: 

ex=
y

y11 2
(0,1), 

and, thus,  

(2) x=ln












 

y

y11 2

(-,0]. 

Therefore, for every y(0,1], the equation (1) has a solution in the interval (-,0]; so, the function sch1 

is surjective. From the equality (2) it follows that the inverse of this function is the function: 

sch 1
1
  : (0,1]  (-,0],  

where, for every x(0,1],  

sch 1
1
 (x)=ln













 

y

y11 2

. 

35) First we observe that the function:  

sch2 : [0,+)  (0,1], 

given from law: for every x[0,+), 

sch2(x)=schx, 

is continuous pe intervalul [0,+), because is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equalities (2.5). So, the function sch2 has the Darboux 

property on the interval [0,+). On the other hand,  

0x
0x

lim




sch2x=

0x
0x

lim


 xx ee

2


=1    and  
x

lim sch2x=
x

lim
xx ee

2


=0, 

which, together with the Darboux property, implies that the function sch2 is surjective. Then, because 

this function is continuous and strictly increasing on the interval [0,+), it follows that she is injective. 

In conclusion, the function sch2 is bijective and, thus, she is invertible. 

Otherwise: According to the equalities (2.5), for x, y(-,0], we have the equivalences:  

sch2x=sch2y  
xx ee

2


=
yy ee

2


  
1e

e
x2

x


=

1e

e
y2

y


  e2x+y+ey=ex+2y+ex  

  e2x+y-ex+2y+ey-ex=0  ex+y(ex-ey)-(ex-ey)=0  (ex-ey)(ex+y-1)=0  x=y, 
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which shows that the function sch2 is injective. The surjectivity of sch2 we can deduce and such: 

consider a certain element y(0,1] and solve the equation: 

(1) sch2x=y, 

i.e., according to the first equality from (2.5):  

xx ee

2


=y. 

This equation becomes: 

e2xy-2ex+y=0, 

whence the it follows that: 

ex=
y

y11 2
[1,+), 

and, thus,  

(2) x=ln












 

y

y11 2

[0,+). 

Therefore, for every y(0,1], the equation (1) has a solution in the interval [0,+); so, the function 

sch2 is surjective. From the equality (2) it follows that the inverse of this function is the function: 

sch 1
2
  : (0,1]  [0,+),  

where, for every x(0,1],  

sch 1
2
  (x)=ln













 

y

y11 2

. 

36) Indeed, because, according to the equalities (3.15), (2.6) and (2.6), for every xR, we have the 

following equalities: 

(cshx)=












shx

1
=












 xx ee

2
=-2

2xx

xx

)ee(

ee







0, 

it follows that, for every xR, the function csh is strictly decreasing both on (-,0), and the (0,+). 

Otherwise: According to the first equality from (2.6), for every x, yR, we have the equalities: 

cshx-cshy=
xx ee

2


-
yy ee

2


=
1e

e2
x2

x




-

1e

e2
y2

y




=2

)1e()1e(

)1e(e)1e(e
y2x2

x2yy2x




 

         =2
)1e()1e(

eeee
y2x2

yyx2xy2x



 

=2
)1e()1e(

)ee()ee(e
y2x2

yxxyyx





=-2
)1e()1e(

)e1()ee(
y2x2

yxyx



 

. 

Now, if x, y(-,0), such that xy, then exey, e2x1, e2y1 and, thus, cshxcshy, which shows that the 

function csh is strictly decreasing on (-,0), and if x, y(0,+), such that xy, then exey, e2x1, e2y1 

and, thus, cshxcshy, which shows that the function csh is strictly decreasing on (0,+). 

37) First we observe that the function:  

 csh1 : (-,0)  (-,0), 

given from law: for every x(-,0), 

 csh1(x)=cshx, 

is continuous on the interval (-,0), because is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equalities (2.6). So, the function csh1 has the Darboux 

property on the interval (-,0). On the other hand,  

x
lim csh1x=

x
lim

xx ee

2


=0   and   

0x
0x

lim




csh1x=

0x
0x

lim


 xx ee

2


=-, 

which, together with the Darboux property, implies that the function csh1 is surjective. Then, because 

this function is continuous and strictly decreasing on the interval (-,0), it follows that she is injective. 

In conclusion, the function csh1 is bijective and, thus, she is invertible. 

Otherwise: According to the first equality from (2.6), for every x, y(-,0), the following 
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equivalences hold:  

csh1x=csh1y  
xx ee

2


=
yy ee

2


  
1e

e
x2

x


=

1e

e
y2

y


  e2x+y-ey=ex+2y-ex  e2x+y-ex+2y+ex-ey=0 

  ex+y(ex-ey)+(ex-ey)=0  (ex-ey)(ex+y+1)=0  x=y, 

which shows that the function csh1 is injective. The surjectivity of csh1 we can deduce and such: 

consider a certain element y(-,0) and solve the equation: 

(1) csh1x=y, 

i.e., according to the first equality from (2.6):  

xx ee

2


=y. 

This equation becomes: 

e2xy-2ex-y=0, 

whence it follows that: 

ex=
y

y11 2
(0,1), 

and, thus,  

(2) x=ln












 

y

y11 2

(-,0). 

Therefore, for every y(-,0), the equation (1) has a solution in the interval (-,0); so, the function 

csh1 is surjective. From the equality (2) it follows that the inverse of this function is the function: 

csh 1
1
  : (-,0)  (-,0),  

where, for every x(-,0),  

csh 1
1
 (x)=ln













 

y

y11 2

. 

38) First we observe that the function:  

csh2 : (0,+)  (0,+), 

given from law: for every x(0,+), 

csh2(x)=cshx, 

is continuous on the interval (0,+), because is a sum, respectively a fraction o two continuous 

functions, on this interval, according to the equalities (2.6). So, the function csh2 has the Darboux 

property on the interval (0,+). On the other hand,  

x
lim csh2x=

x
lim

xx ee

2


=0   and  

0x
0x

lim




csh2x=

0x
0x

lim


 xx ee

2


=+, 

which, together with the Darboux property, implies that the function csh2 is surjective. Then, because 

this function is continuous and strictly decreasing on the interval (0,+), it follows that she is 

injective. In conclusion, the function csh2 is bijective and, thus, she is invertible. 

Otherwise: According to the first equality from (2.6), dacă x, y(0,+), then the following 

equivalences hold:  

csh2x=csh2y  
xx ee

2


=
yy ee

2


  
1e

e
x2

x


=

1e

e
y2

y


  e2x+y-ey=ex+2y-ex  e2x+y-ex+2y+ex-ey=0 

    ex+y(ex-ey)+(ex-ey)=0  (ex-ey)(ex+y+1)=0  x=y, 

which shows that the function csh2 is injective. The surjectivity of csh2 we can deduce and such: 

consider a certain element y(0,+) and solve the equation: 

(1) csh2x=y, 

i.e, according to the first equality from (2.6):  

xx ee

2


=y. 
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This equation becomes:  

e2xy-2ex-y=0, 

whence it follows that: 

ex=
y

y11 2
(1,+), 

and, thus,  

(2) x=ln












 

y

y11 2

(0,+). 

Therefore, for every y(0,+), the equation (1) has a solution in the interval (0,+); so, the function 

csh2 is surjective. From the equality (2) it follows that the inverse of this function is the function: 

csh 1
2
  : (0,+)  (0,+),  

where, for every x(0,+),  

csh 1
2
  (x)=ln













 

y

y11 2

.  

4. Conclusions 

As you can see, in this paper we presented definitions of hyperbolic functions, immediate properties 

and 38 other properties, divided into four groups. The aim was to form the reader's attention and 

interest in these issues first global image of these functions, that would help in addressing other issues 

more complex. Precisely why the the demonstrations are presented in full, in detail, so that it can be 

used in the classroom. 
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